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ABSTRACT

Aerodynamics and control characteristics of helicopters
in level flight and steep descents at low speeds are analyzed.
S8ingle-rotor, tandem-rotor, and compound helicopters are
considered and are specifically represented by the 8-58,
AH-56A, and YHC-1A, for each of which derivatives and transfer
functions are presented., New analytic methods are used to
describe the flow about descending rotors. Using these methods,
predictions are made of the boundaries of the vortex-ring state
and of tip loss factors. Good agreement with experiment is
obtained. A new modular stability derivative program, MOSTAB,
is described and is used to calculate derivatives for the S-58
and AH-56A, including lateral-longitudinal cross-coupling
derivatives. 1t is shown that, for these helicopters, control
of flight path by collective pitch becomes difficult for low=-
speed steep descents even with stability augmentation, due to a
nonminimum phase transfer function and the associated wrong-way
step response characteristic. The effect is identified as an
important factor in the observed degradation of flying qualities
in steep approaches,
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CHAPTER I. INTRODUCTION

I.1 THE SCOPE OF THIS REPORT

This introduction is divided into two parts. 1In the first,
we describe the scope of the report and indicate how it advances
the state of the art., The second part of the introduction is a
summary of the specific contents of the report, chapter by chepter.
The reader who does not wish to read the entire report should use
Section 2 of the introduction as a guide to areas of specific
interest.

Approach and landing are generally the most demanding
portions of a flight, for both fixed-wing aircraft and helicopters.
Proximity to the ground demands increased precision in controlling
the flight path, and the pilot'stask may be extremely difficult,
particularly in IFR conditions. Pilot comments on helicopters have
indicated that the difficulties become more pronounced as the desired
approach angle increases (see, e.g., Ref, 1). This suggests that at
least part of the difficulty stems from changes in the dynamics and
aerodynamic characteristics of the helicopter associated with change
in the trim condition from level flight to descent. This is the
area of most interest to the present report. The main purpose of
this report is to identify the effects of descent angle on the
aerodynamics and dynamics of typical helicopters, and to interpret
the significance of these effects for humen and automatic control.

To achieve this goal it was necessary to go back to funda-
mentals. As will be described, it was difficult to obtain reliable
stability derivatives for small perturbations from steep descents,
and these had to be calculated. Such calculations required a better
understanding of the effect of descent angle on the flow about the
rotor in the unperturbed condition. This required some advances
in aerodynemic theory. Thesc included delineation of the boundaries
of the vortex-ring state, plus improved analytic models for the
aerodynamic tip losses of rotors in level flight and descent.

Having obtained improved flow models for the aerodynamics
of rotors in steep descents, it was necessary to calculate stability
derivatives incorporating these models. Stability derivatives are
presented here for three specific helicopters: the Sikorsky S-58,
the Boeing-Vertol YHC-1A, and the Lockheed AH-56A Cheyenne. These
are employed to represent the general classes of single-rotor,
tandem-rotor, and compound helicopters. Inferences are drawn
about the behavior of each class from the dynamics of these individual
configurations.



The variety of configurations and the novel flow represen-
tations made it impossible to use handbook methods of computing
derivatives, or even existing computer progrems. The available
progrems were tied to particular classes of helicopter and/or
certain flow representations. We therefore developed a new computer
program for calculating derivatives. This program, called MOSTAB
(modular stability derivative program), calculates trim and stability
derivatives for any flying vehicle, described as an assemblage of
rigid and flexible rotors, bodies, and fixed lifting surfaces (wings,
tails). The MOSTAB program is an important product of this study.

It was used to calculate trim conditions and stability derivatives for
speeds of 0, 20, L0, 60, and 100 knots for the S-58 and AH-56A in level

flight and descent. For the YHC-1A published derivatives were used.

Having obtained the derivatives,it was noticed that strong
cross-coupling between lateral and longitudinal perturbations
occurred, as evidenced by large magnitudes of derivatives such as
Lg» Mp as compared with L, Mg+ In many previous analytic studies,
these cross-coupling derivatives were not available. Such an
incomplete treatment, with arbitrary decoupling of longitudinal
and lateral perturbations,did not seem appropriate for a fundamental
study, and so all the cross-coupling derivatives were retained;
the transfer functions thus indicated the responses ia six
degrees of freedom to each control input.

To validate the above transfer functions, several sets of
responses to step control inputs calculated using MOSTAB derivatives
were compared with flight test time histories, showing good agreement.

Finally, the implications of the transfer functions for
control of each helicopter were considered. The philosophy was
a sort of "reverse optimization'; instead of attempting to produce
the best system, by modifying the characteristics of the aircraft,
we searched for these characteristics which would cause difficulties
for human and automatic control. Special interest centered on
adverse characteristics which appeared in descent but were absent
from level flight. It was found that some transfer functions did
exhibit significant differences between level flight and descent.
In particular, at low speeds, control of the normal deviation
from the desired flight path by collective pitch becomes more
difficult as the desired descent angle increases. This is demonstrated
by the appearance of a right-half plane zero in the appropriate
transfer functions.



The major advances in the state of the art that are presented
in the report are:

(i) a method of predicting the boundaries of the vortex-
ring state.

(1i) improved models for the tip losses of helicopter
rotors and methods of calculating their effect on
derivatives, including cyclic variations of tip
losses.

(i1i) the MOSTAB program, which calculates trim and
stability derivatives of any helicopter configuration.

(iv) presentation of derivatives and transfer functions
for representative single-rotor, tandem-rotor, and
compound helicopters, including lateral-longitudinal
cross=-coupling effects.

(v) didentification of some significant changes in closed-
loop control characteristics between level flight
and descents.

I.2. SUMMARY OF SPECIFIC CONTENTS OF THIS REPORT

Chapter II presents a brief summary of the kinematics of
steep approaches, demonstrating the equivalence between descent and
deceleration capability. The importance of descent/deceleration
capability to Army missions is explained. A description is also
given of some of the problems that have been observed in steep-
approach flight tests. This chapter contains nothing new; it
merely sets the stage for the detailed technical analyses that
follow, by explaining their relevance to practical problems.

Chapter III presents a theory for predicting the boundaries
of the vortex-ring state. This is believed to be the first published
theory which predicts the major features of these unsteady flow
boundaries. The analysis is very simple, and employs momentum
theory and actuator disc concepts. Despite this simplicity, the
agreement with experiment is good.

Chapter IV uses flow models developed in Chapter III to
calculate the derivatives of an isolated rotor in vertical descent.
For purposes of calculating derivatives, it is customary to represent
the tip losses by reducing the rotor radius from R to an effective
radius BR. Standard formulas exist for B in hover, but in descent
these disagree with experiment, yielding inaccurate derivatives.

It was therefore necessary to produce modified formulas for B; these



are derived in Chapter IV, and are shown to give good agreement with
test data on model rotors in vertical descent. Data were not available
for inclined descent, for which the theory predicts that the tip losses
should vary cyclically. This cyclic tip loss factor was included in
subsequent calculations of derivatives. In addition, some cases were
re-run without tip losses, to illustrate their importance by comparing
transfer functions (given in Chapter VI) with and without tip losses.

Chapter V presents a general description of the MOSTAB modular
stability derivative program. This briefly summarizes MOSTAB, avoiding
technical detail (which is given in Volume II), Chapter V also
presents a discussion of the accuracy of the MOSTAB derivatives. Flight
test data on the S-58 are compared with predictions from MOSTAB. The
results are generally in good agreement.

The derivatives and transfer functions for the YHC-1A, AH-56A
and S-58 at each flight condition are presented in Volumes
11 - 1V, Eigenvectors and residues of partial fraction
expansions of selected transfer functions are given in the main text
of the report, where appropriate. These data characterize the transient
response characteristics of each helicopter for several forward speeds
and descent angles,

The main section of the report continues in Chapter VI with the
discussion of the open-loop and closed-loop dynamics of each class of
helicopter, as revealed by the above data. Chapter VI discusses the
tandem-rotor configuration, exemplified by the YHC-1A. Chapter VII
discusses the dynamics of the S-58, representing single-rotor
configurations. Chapter VIII discusses some control problems of the
compound configuration, typified by the AH-56A. The principal con-
clusions of the report are given in Chapter IX.

Volume II provides an extensive account of the MOSTAB program,
It should be noted that the version of MOSTAB used in this report
(MOSTAB-B) does not include rotor stall or compressibility characteris-
tics, as these were not significant for the approach flight conditions
of interest here, Volume II describes the coordinate systems and the
rationale for finding trim and derivatives, presents the equations used
in MOSTAB and explains the underlying assumptions, describes the rotor
analysis method used to represent the first flapping mode, includes a
listing of the MOSTAB program, and explains computational aspects of
MOSTAB.



Volume III presents derivatives and transfer functions for
the YHC-1A tandem-rotor helicopter at forward speeds of 0, 60, and
80 knots, and several descent rates, It also presents derivatives
for the S-58 at 0, 20, 40, 60, and 100 knots, and four descent rates
(o, 7.5, 15,0, 22,5 fps) at each speed. Transfer functions are also
tabulated for all the level flight and maximum descent rate conditions,

Volume IV presents similar data to Volume III for the AH-56A
and reviews the literature on turbulence representation for low

altitudes.,

Reader's Guide

For a quick overview of the main points of this report, read
all of Chapter II; the first half of Chapter V, which describes the
MOSTAB program; the summaries at the ends of Chapters III, IV, VI,
VII, and VIII: and all of Chapter X,



CHAPTER II. OPERATIONAL ASPECTS OF STEEP APPROACHES
ITa THE IMPORTANCE OF STEEP APPROACH CAPABILITY

In this chapter we review some analytic and experimental
work on helicopter steep approaches in order to pinpoint the
vehicle parameters of prime importance. As will be shown, one of
the most important parameters is maximum obtainable drag/lift
ratio expressed as a function of airspeed. This determines the
helicopter's descent and deceleration capability.

Figure 1 illustrates the balance of forces in a straight~
line descent in still air with acceleration V. (Note that V is negative
for deceleration and that the flight path angle y is also negative
for descent.) The relationship between y, V¥, and the drag/lift
ratio D/L is

-]

D \

tan(-y) = < * g cos(=7) (1)

The second term is merely the ratio of the acceleration
along the flight path to the component of gravitational acceleration
along the flight path. Since ¥ is negative for deceleration,
increased deceleration at a given V and y requires more D/L, which
implies increased D with constant L. In most instances the value
of D/L that can be obtained at a given V is limited; thus descent
angle may be traded off against deceleration, but the sum of descent
angle and deceleration is limited. This limit is fundamental for
helicopter steep approaches. For simplicity, the limit is defined
by considering a constant-speed descent for which the maximum
descent angle is

(=), = tan™! (/1) (2)

Assuming that the landing is made at essentially zero forward
speed, the terminal phase of flight must involve descent and
deceleration. The way in which these are combined can greatly
affect the effectiveness of the mission. This is illustrated

by Figure 2, taken from Reference 2, which compares two alternative
approach profiles. One is a 10-degree straight-line descent with
constant deceleration of 0.088 g. The other approach involves two
straight segments: the first at 14.8 degrees with no deceleration,
followed by a level segment with 0.264 g deceleration. In both
approaches the aircraft is flying at (D/L)max = 0.264 throughout.



Figure 1. Forces Acting on an Aircraft Flying a Straight-Linec
Accelerating Descent.
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Figure 2. Alternative Approach Flight Profiles.



From Figure 2, it will be seen that the total approach
time is reduced from 91 seconds to 61 seconds by the two-segment
approach. Undoubtedly, further savings are possible by means of
more complicated approach profiles. Much work has been done on
the optimization of flight paths within given constraints on maximum
D/L. Interesting though this is, it is somewhat outside the scope
of this report. Our objective is to determine the constraints
limiting (D/L)pax for given helicopters. This forms the main topic
of this and the next chapter,

To show the operational benefits of increased (D/L)pax for
a given approach profile, consider Figure 5, also taken from Reference 2.
(D/L) pax must be at least 0.17 in order to achieve the 10-degree
descent. However, raising (D/L)pax from 0.21 to 0.35 reduces the
descent time from 3 to 1.5 minutes, measured from the 3-mile
point to touchdown.

Further benefits of increased (D/L)psy include enhanced
capability to land in confined areas such as valleys and forest
clearings. In addition, a high (D/L)pax permits steep downwind
approaches. This may be important for forward operations or where
a normel into-the-wind approach may bring the helicopter uncom-
fortably close to the enemy. The effects of head- and tailwinds
are illustrated in Figure L.

Using Figure 4 to construct a simple example: for (D/L) = 0.2,
with 60 knots airspeed and & 20-knot headwind, a descent angle of

17 degrees can be achieved. This reduces to 11.5 degrees in still
air and to 8.5 degrees for a 20-knot tailwind. The implications for

wind shears are profound.
The net conclusion that emerges from this brief review is
that a high (D/L)pax is desirable
(i) to minimize unproductive approach time.

(ii) to permit approaches with adverse wind directions and
to cope with wind shears.

(iii) to permit approaches to confined areas.

II.2  TACTORS LIMITING (D/L)

For most helicopters, (D/L) gy is limited by the flow
conditions about the main rotor(s). This is illustrated in Figure 5,
which shows the permissible regions of horizontal versus vertical
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velocity for & single-rotor helicopter.* The boundaries shown stem
from two causes:

(1) the vortex-ring state
(ii) autorotation

The vortex-ring state is a region of unsteady flow which occurs

on rotors operating at high (D{L) at low speeds. It limits the
maximum achievable steady (D/L « By contrast, the autorotation
boundary is not associated with unsteady flow; it occurs because

the torque on the rotor is zero. Steeper descents would be possible
if a braking torque could be applied to the rotor. Current practice
precludes engine braking, as it is usual to include a freewheel

or override device to prevent stoppage of the rotor following

engine failure.

Autorotation is not widely used in IFR situations because
the rates of descent are usually excessive, particularly for the
higher disc loading helicopters. The principal operational limitation
on (D/L)pax therefore is due to the vortex-ring state. This is
discussed at length in Chapter III.

I1.3 OTHER FACTORS LIMITING STEEPNESS OF HELICOPTER APPROACHES

The foregoing discussion has emphasized the importance of
(D/L)max' However, this is by no means the only factor limiting
the achieveble steepness of helicopter approaches. Let us define
the term "nominal flight profile' as a combination of airspeeds,
descent angles, and decelerations which is within the limits
permitted by (D/L)pex- In practice, a nominal flight profile
mey be unflyable. The reasons for this include gust response,
displays, handling qualities, loss of ground reference, etc.
In particular, indications exist that handling qualities deteriorate
with increased steepness of the nominel flight path. For example,
Reference l,describing tests on a CH=-34C helicopter, notes that,
when following a 3>=degree nominal flight path, the rate of descent
veried from 100 to 700 ft/min. At y = =35 degrees it varied
from 400 to 3000 ft/min, which was regarded as unacceptable. In
addition to the records of longitudinal and lateral deviations
presented in Reference 1, pilot comments also confirmed the deteri-
oration in handling qualities with increased -y. A similar trend
is noted in flight tests on a HUP-1 tandem-rotor helicopter described
in Reference: 3 and 4.

In Figure 5 the horizontal and vertical velqgcities have been
normalized through division by v, = (1/2p)1/2 x (Disc Loading)1/2.

Figure 5 is illustrative only and should not be scaled. More
precise boundaries are given in Chapter III.

12



To form a complete assessment of the problems involved
in flying steep approaches,it is necessary to consider both the
limitations on nominal flight profiles and also the limitations
associated with small perturbations from nominal flight profiles.
Hence, in Chepter III we analyze the limits on (D/L)pmgx. The
results are used to determine nominal flight profiles for the
YHC-1A, S-58, and AH-56A, and subsequent chapters study the
behavior of these helicopters in small perturbations from these
nominal flight profiles.,

Summary
In this chepter we have tried to "set the stage' for the
detailed analyses that follow by demonstrating that:

(1) High (D/L)pex is required to minimize unproductive
mission time, to permit steep descents into confined
areas, and to allow epproaches from any direction,
irrespective of the wind vector.

(ii) At approach speeis, (D/L)pax is limited by autorotation

and by the vortex-ring state. The latter limit is
more serious since it occurs at smaller rates of
descent.

(iii) Within the bounds set by (D/L)pax,the helicopter's
steep descent capability may be limited by some

handling qualities factors, which appear to deteriorate

with increased steepness of the approach.

13



CHAPTER III. THE VORTEX-RING STATE

III.1 INTRODUCTION

In performing steep descents at low speeds, helicopters
encounter an unsteady flow condition known as the ''vortexering state".
This state is characterized by severe thrust fluctuations and difficulty of
control. This chapter presents a simple method of predicting the
combination of rate of descent and angle of descent at which the
vortex-ring state occurs. Momentum theory and actuator disc concepts
are employed; despite the simplicity of this approach, the results are
in good agreement with experiment.

The chapter is organized as follows: Section 2 presents an
analytical method of calculating the vortex-ring state boundary for
vertical descent using simple momentum theory modified to include
certain viscous effects. Section 3 extends the methad to the case
of nonvertical descent. In Section 4 the experimental data and
published analyses are reviewed and compared with the theory of this
report, Section 5 gives conclusions and recommendations for further
work.

III.2 FLOW MODEL AND EQUATTIONS FOR VERTICAL DESCENT

The analysis considers both vertical and inclined descent, but
the theory is most easily understood by considering the vertical descent
case first.

Consider an actuator disc in a uniform stream of air
rising with velocity V. This, of course, corresponds to a vertical
descent at velocity V on an actual helicopter. The flow model used is
illustrated in Figure 6. It consists of a slipstream with uniform flow
at any cross-section, surrounded by a tube of vorticity. This tube is
modeled by a series 6f vortex cores. Thus, near the rotor outside the
tube the stream velocity is V upward, and inside the tube the velocity
is (v = V) downward, where vis the induced velocity at the actuator
disc. The rate of descent of the centers of the vortex cores is the
mean of these velocities, i.e., (% - V)downward.

The key assumption of the analysis is that the vortex-ring
state will occur when the relative velocity of the vortex cores normal
to the disc falls to zero. That is, when the rate of descent is
increased to the point where vortex cores no longer move away from the
actuator disc, unsteady flow occurs. The critical rate of descent
Vcrit at which this occurs is given by

- Y
Vcrit -2 (3)

1L
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15



From simple momentum theory (e.g., Reference 5 ks

20 +\/(%) — ()

where
V, = JThrust/2an2
QA Air Density
R A Rotor Radius

Combining (3) and (4) yields the following formule for the rate of
vertical descent at which the vortex-ring state commences.

Yh

Vcrit = V;_ = 0.707 Yh (5)

This formula, although derived by the simplest possible methods, agrees
well with experiments, as will be shown,

An alternative formulation of EQ. (5) can be obtained by
putting J c V/nD, Crm < T/on‘?Dh, which gives

crit Tp
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A further alternative is obtained by using C, S T/pnneRh and A Q‘V/QR,

giving the critical rate of vertical descent as

1 /
Merit = EJCT )

Tip loss Effects

It is necessary to refine the theory slightly to allow for
nonuniform flow when considering high disc loading rotors and/or
inclined descents. This is done by introducing a tip loss factor B.
Blade elements outside of radius BR are assumed to produce no thrust.
Thus, nsar the rotor, instead of a uniform induced velocity v over an
area nRS we assume & uniform induced velocity v over an ares TR2B%,
This leads to a slight increase in V 1 for vertical descents, but the
effect is small for typical helicopt&F§isc losdings. The tip loss
effect for vertical descents is easily obtained as a special case of
the more general formulation of the theory for inclined descents,
derived below.

III.3 GENERAL THEORY FOR INCLINED DESCENT

Figure 7 shows the assumed flow model for inclined descent
along a flight path inclined at an angle a to the horizontal (for
vertical descent a = 90 degrees). The velocity of the vortex cores
normal to the actuator disc is assumed to be the mean of the normal
velocities inside and outside the slipstream, i.e., (v/2) - V sina.
Marked unsteadiness is predicted to occur when the rate of descent
becomes sufficiently high to cause the velocity to fall to zero. This
condition gives the following general formula:

= Y
Vcrit - 2 sina (6)

To express Eq. (8) in a more convenient form,it is necessary
to rewrite it in terms of horizontal velocity (V cosa), rate of descent
(Vsina), and the tip loss factor B. This is done below by manipulating
some equations of momentum theory.

17
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From momentum theory (e.g., Reference 5) the thrust of an
actuator disc descending at an angle a to the horizontal can be
expressed as

T = 2p:rR282v|Vr| (9)

where Vr2 = v2 - XNv sina + V2 (10)

Eqs. (9) and (10) differ from familiar equations of
momentum theory only in that the rotor radius R has been replaced by
an effective radius BR. Substituting Eq. (10) in Eq. (9), squaring,
and using the definition of v, from Eq. (4) gives

h
(2:1pR2 vhg)‘2 = (2rrpR2 v)2 Bh (v2 - 2 v sina + V2) (11)
Expanding,
vhh = Bhvl‘L - 2BV (sina) B5 v5 + BZVZBQV2 (12)
In
(Vh)___1_ 2B Vsina | BV (13)
Bv By B2 v2
L
(ﬂ) - ] (14)
Yh 2
1 . =2.BVsina  (BV
Bv Bv

This is similar in form to the standard quartic equation of momentum
theory usually derived for B = 1; i.e., quoting from Reference 5,

v ¥ 1
<) - (15)
( "h) , . 2Vsina (z)2
v v

Eq. (1%) is conveniently graphed with v/vn as ordinate and Vsina/vh
as abscissa, for a fixed o forming a nondimensional graph of induced

19



velocity versus rate of descent for given angle of descent. (Similar
graphs are given in References 6 and 7 for B=1.) The graphs can be
formed from Eq.(14) for a fixed B using Bv/v, as ordinate and

B Vsina/v as abscissa. Figure 8 illustrates = these graphs for
several values of a, from 5 to 90 degrees.

To establish the boundary of the vortex-ring state, for
a given B and o, simply include in Figure 8 the critical condition of
Eq. (8). Expressed in terms of the variables of Figure 8, Eq. (8)
becomes

Bv _ _2B Vsina (16)
v, v
h h

This describes a straight line of slope 2, as shown on Figure 8. The
intersection of this line with the remaining graphs denotes the

critical value of rate of descent for a given B and a. It is convenient
to plot the results in terms of nondimensional horizontal velocity,
Vecosa/v,, and nondimensional rate of descent, Vsina/w,, for a given B as
shown oR’Figures 9, 10, and 11. 1In these figures, Eq. (16) corresponds to
the line marked " zero parasite drag' for which case a = - 7, as
explained below.

Effect of Parasite Drag

The parasite drag of the rotor and of other components has
not been included up to this point. This drag causes the boundary of
the vortex-ring state to occur at a steeper angle of descent for a
given airspeed. The effects of parasite drag can be included in the
analysis as indicated below.

Figure 12 shows the forces acting on a helicopter in a
steady descent; the aerodynamic forces are assumed to consist only of
dreg acting parallel to the flight path and rotor thrust normal to
the actuator disc.

From Figure 12, resolving parallel and normal to the flight
path, noting that y is negative for descent,

T sina +D +Wsin y = 0 (17)

T cosa - Wcos ¥y =0 (18)

20
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These equations yield the required relation between y and o as:
ta.na.=:gm-ta.n7 (19)

The drag/weight ratio is conveniently expressed in terms of a 'drag
area' Af defined as

1 2

Thus, using the definition of vy, (v s T/Qanz), and assuming thrust
at hover equal to weight, Eq. (19) b&comes

A 2
f \'i 1
tan a = - - tan y (21)

,_mRz ( vh) cos ¥

To modify Figures 9, 10, and 11 to show tge effect of profile
drag we require the relationship between y and Af/hnR for a given V

and a. This is gbtained by manipulating Eq. (21) to give 7 in temms of
a, V, and Af/hnR , a8 follows. Multiply (21) by cosy and cosa:

Af v 2
sin a cos ¥y = - 5 (v ) cos a - sin y cos a  (22)
4nR h
A 2
sin (a + ) = - f2( z) cos a (23)
LR h
A 2
y =-a- 8in” g (X) cos a (2h)
LnR h
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Eq. (24) has been used to show the effect of parasite drag in
Figures 9, 10, and 11. For a fixed value of the drag parameter

Af/hnR2 = 0.05, the flight path angleat any V changes from a to ¥

as determined from Eq. (22), For zero parasite drag, a = - 7.
Note that the inclusion of parasite drag yields the characteristic
shape of the vortex-ring boundary, first rising and then falling,

as horizontal speed is increased.

The drag parameter Af/hnR2 was deliberately chosen to be

rather high, so that most helicopters display vortex-ring boundaries
falling between the ' zero drag' and "with drag'" curves of Figures

9, 10, and 11. To appreciate the physical significance of the parameter
Af/hnRe, note that a value of 0,05 corresponds to a parasite drag area

of 20 percent of the disc area. This is much larger than would be
expected in level flight for most helicopters. However, in descent,
the fuselage may be operating at a large angle of attack, causing a
corresponding increase in drag area. When comparing Figures 9, 10
and 11 with exr rimental results on wind tunnel models, note that the
parasite drag of the fuselage, tail, and other components will be
disproportionately large at low Reynolds numbers.

To predict vortex-ring boundaries of specific configurations
using Figures 9, 10 and 11 requires the value of the tip loss factor, B.
Well-known formulas exist for B in hover}s e.g., Payne (Reference 8)
quotes a formula due to Sissingh,

2c (25)

1
B=1a 5

T

Payne notes that Sissingh's formula is in reasonable agreement with
tests on untwisted, untapered blades but yields values of B which are
too small for uniformly loaded blades. For the latter, Payne suggests
an alternative formula, which at hover reduces to

B=1-%\/-ET— (26)
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For high-disc-loading VTOL rotors, both the above formulas
appear to give values of B which are too small. An alternative semi-
empiricel expression is derived in Chapter IV for rotors of ideal
twist and is given below. This is more complicated than Egs. (2)) or

but gives good accuracy for vertical descent as well as hover.

B =1 -% J%@ (et +V/BQR) (1)

This gives a cubic equation for B, for a given rotor geometry, pitch
setting, and rate of descent. Empirically it is suggested that Eq. (<7)
can be used for inclined as well as vertical descent, replacing V by
Vsina.

III.4 COMPARISON WITH EXPERIMENT

Although investigations of the behavior of rotors in the
vortex-ring state have been made since the 1920's, only the more recent
references contain deta useful for comparison with the theory of this
report. Most of the earlier references (e.g., Reference 9) are confined
to measurement and empirical prediction of the mean thrust and through-
flow velocity. Referencel0 summarizes various presentations of parameters
such as 1/f and 1/F. These parameters are derived from measurements of
aversaged quantities, so these data are unsuitable for determining the
velocity and angle of descent at which noticeable unsteadiness occurs.
References 11, 12, 13, 14, and 15 do not include any unsteady force
measurements, but they do present some flow visualizations, which quali-
tatively indicate a "region of roughness.' These data are discussed
later, For purposes of comparison with theory, it is unfortunate that the
available test data are for blades with non-ideal twist; e.g., References
11, 12, 1%, 14, and 1° employ an untwisted rotor. The resulting induced
velocity distribution is at variance with the uniform distribution
assumed in the present theory. However, even full-scale helicopters
do not have ideal twist, so this compromise must be accepted in
order to compare theory and experiment.

Vertical Descent

Azuma (Reference 16 ) presents data on thrust and inflow
fluctuations for a 3-bladed rotor, with a diameter of 1100 mm, a solidity
of 0.0573, an NACA 0012 section and -8° twist from root to tivo, free to
flap and lag. The rate-of=descent parameter was expressed as Vﬂh/v @,
because the nominal rotational speed of 1,000 rpm was not maintalneg
precisely.
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Lacking date on V/QR, we cannot make allowance for the tip
loss factor, However, Ea. (5), Vcrit = 0,707 LX) gives good agreement

with the observed onset of significant unsteady thrust and inflow,

This is demonstrated in Figure 13. Eq. (5) corresponds to r.m,s.
thrust fluctuations AT/T ranging from 4% to 14% depending on the blede
pitch setting. (The thrust fluctuation, AT, is defined as T - T,

where T is the mean thrust; thus the r.m.s. peak to peak fluctuation

is 8 to 28 of the mean thrust.) Note that the graph marked 6_ = 8
degrees corresponds to zero blede angle at the tip. As predictgd by
Eq. (3)and Figures 9, 10, and 11, the critical rate of descent normali-
zed with respect to v, and Q. increases as the tip blade angle is
increased (by increasing 6 ). The experimental data of Reference 16
indicate that the mean thrust in descent variesy for 6_ = 10 degrees at
V=07TWV Q/Qh, the mean thrust falls to 80% of the hoGering thrust.

To conver% the data to the constant mean thrust assumed by the theory
(and appropriate to steady descents), the value of V__., must be
increased above that observed experimentally. Withoﬁ%laata on C.,

this cannot be done precisely, but the trend will certainly be t0 move
the peaks of the thrust fluctuation curves to the right, thus increas-
ing agreement with the predicted boundary for the onset of unsteady

flow,

Washizu (Reference 7) describes tests on a similar rotor
in vertical and inclined descent., Figure 14 shows envelopes of C
versus the rate of descent parameter A, for vertical descent. Fo
two of the tests, the blade pitch setting is very low and the tips are
actually lifting downward in hover. This invalidates comparisons with
our theory, which assumes uniform inflow except at the tips,
corresponding to the rather high pitch setting appropriate to maximum
static thrust/power. For this reason, the data taken at 6,75 = 4.5
degrees are also unsuitable for comparison, However, using Eq. (7)

and B = 0.95, the case with etip = 8,0 degrees gives Xcrit = 0.033.

This corresponds to a mean~to=peak thrust fluctuation of 12% of the
mean thrust,

Inclined Descent

Washizu et al presents experimental data on thrust and
induced velocity fluctuations in the vortex-ring state for single-
rotor configurations (Reference 7) and tandem confipurations (Reference
17). Contours of percentage thrust fluctuation are shown on the hori-
zontal velocity/rate-ofhdescent planes however, the data points are not
indicated. Hence results for low pitch angles cannot be removed to
enable the remaining data to be compared with the theory. Washizu
et al gives more complete data on induced velocity fluctuations,
averaged over the disc based on measurements of thrust and torque
fluctuations, and these can be compared with theory. Figures 19 and 16

29



O
o

=
3
7]

-ul

O
O
l

THRUSYT FLUCTUATION /MEAN THRUST

0.05f

1

e PREDICTED
x BOUNDARY, V,14=070%,

a =90°
o el'= g8°
e |O°
5 12°
o 14°

]

h

070710 g, 29
T
RATE-OF-DESCENT PARAMETER

Figure 13. Measured Thrust Fluctuation for a Model

Helicopter Rotor in Vertical Descent.

30



6.0}
x10"3

50

408

THRUST COEFFICIENT
ol
o

();'__.r"f 4 I L |
02 04 06 08 .0 .2

NONDIMENSIONAL RATE OF DESCENT,

Figure 14. Measured Thrust Coefficient for a Model
Helicopter Rotor in Vertical Descent.

31



illustrate the data of Reference 7 for rotor with 6 o = T.5 degrees

and o« = 50 and 70 degrees. Note that the lower boundary of the induced
velocity is close to the momentum theory solutions and that the onset
of marked unsteadiness corresponds to the critical condition predicted
by Figure 8. This critical condition corresponds to the shaded lines
on Figures 15 and 16.

Yaggy and Mort (Reference 18) describe tests on a
flapping propeller with the shaft axis inclined at 180, 165, 150, 135,
and 120 degrees to the freestream. This corresponds to descent angles
of 90, 75, 60, 45, and 30 degrees.” Contours of the thrust fluctua-
tion AT (measured from the mean thrust to the peak) diVéded by the mean
thrust T are shown for various mean disc loadings T/nR in Figure 7
of Reference 18. Figure 17 illustrates the results for T/nR2 =16
lb/ftg. The vortex-ring boundary has al7o been calculated assuming
B = 0.86 and a mean Vo Yy 2 (T/2pnR2) ! The boundary corresponds

to a AT/T of between 156 and 25%. A more accurate boundary can be
calculated if v is based on the lower value of thrust T - AT. This is
in accord with Figures 15 and 16, which indicate that the minimum
induced velocity during the vortex-ring state is approximately equal
to the velocity predicted by momentum theory. To follow this sugges-
tion, substitute the critical condition v = 2Vsina in Egs. (9) and
(10). This gives

T« AT = hmzaz(v sin a)2 /sin a (28)

The critical rate of descent can be calculated itera-
tively by first putting AT = 0. This gives the solid-line boundary
on Figure 17, Since in this case we have knowledge of AT/T, we can
refine the soluti?n by reducing the critical rate of descent in the
ratio (1 - AT/T)! The resulting boundary is also shown on
Figure 17 as a broken line, Without prior knowledge of AT/T (or an
estimate), it would be possible to calculate only the solid=line
boundary.

Flight Tests

Published data on flight characteristics of halicopters
in steep descents are insufficiently complete to permit mapping the
boundaries of the vortex-ring region. However, some related data
points can be obtained as listed below.

The descent angles of 75, 60, 45, and 30 degrees are necessarily
approximate, because Ref, 18 does not give the inclination of the
thrust from the shaft axis.
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Reference 19 nutes that for a Westland Whirlwind helicopter,
the vortex=ring state vas wll established at 1500 ft/min verticsl
descent, corresponding to V/v_ = 0.8k, Tests on an early helicopter,
the Sikorsky M-kD, described In Reference ZQ showed onset of roughness
in verticel descent at 500 f.p.a. and "shuddering” commencing at
900 f.p.m, corresponding to o.mvh. In the discussion of Reference <),

Bennett states that fur the ReAB, the critical rete of descent decresscs
as forwvard speed is increased, alwost reaching level flight at GO m,p.h,

The above results are in accord vith the theory, but it
nust be remembered that factors other than the behavior of the rotar
itself in the vortex=ring state may influence helicopter flying qualities
in desocents. The unsteady flov may induce large pitching moments on the
fuselage. Neference 22 discusses this phenomenon, noting that the size
and cross-section of the fuselage tail cone have an ixportant effect.
For example, the R-4B had particularly bad charscteristics in tho vortex-
ring state <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>